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(57) ABSTRACT

The technique introduced here involves using a block address
and a corresponding generation number as a “fingerprint” to
uniquely identify a sequence of data within a given storage
domain. Each block address has an associated generation
number which indicates the number of times that data at that
block address has been modified. This technique can be
employed, for example, to determine whether a given storage
server already has the data, and to avoid sending the data to
that storage server over a network if it already has the data. It
can also be employed to maintain cache coherency among
multiple storage nodes.
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USING LOGICAL BLOCK ADDRESSES WITH
GENERATION NUMBERS AS DATA
FINGERPRINTS FOR NETWORK
DEDUPLICATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/965,012, entitled “USING LOGICAL
BLOCK ADDRESSES WITH GENERATION NUMBERS
AS DATA FINGERPRINTS FOR NETWORK DEDUPLI-
CATION”, which was filed on Aug. 12, 2013, which is a
continuation of U.S. patent application Ser. No. 12/610,231,
entitled “USING LOGICAL BLOCK ADDRESSES WITH
GENERATION NUMBERS AS DATA FINGERPRINTS
FOR NETWORK DEDUPLICATION”, which was filed on
Oct. 30, 2009, now issued as U.S. Pat. No. 8,799,367 on Aug.
5, 2014, which is incorporated by reference herein in its
entirety.

FIELD OF THE INVENTION

At least one embodiment of the present invention pertains
to data storage systems, and more particularly, to a technique
for using a logical block address and an associated generation
number as a data fingerprint for network deduplication.

BACKGROUND

Network storage is a common approach for making large
amounts of data accessible to many users and/or for backing
up data. In a network storage environment, a storage server
makes data available to client systems by presenting or
exporting to the clients one or more logical containers of data.
There are various forms of network storage, including net-
work attached storage (NAS) and storage area networks
(SANSs). In a NAS context, a storage server services file-level
requests from clients, whereas in a SAN context a storage
server services block-level requests. Some storage servers are
capable of servicing both file-level requests and block-level
requests.

One common application of network storage is data mir-
roring. Mirroring is a technique for backing up data, where a
given data set at a source is replicated exactly at a destination,
which is often geographically remote from the source. The
replica data set created at the destination is called a “mirror”
of'the original data set. Typically mirroring involves the use of
atleast two storage servers, e.g., one at the source and another
at the destination, which communicate with each other
through a computer network or other type of data interconnect
to create the mirror.

In a large-scale storage system, such as an enterprise stor-
age network, it is common for some data to be duplicated and
stored in multiple places in the storage system. Sometimes
data duplication is intentional and desired, as in mirroring, but
often it is an incidental byproduct of normal operation of a
storage system. For example, a given sequence of data may be
part of two or more different files, LUNS, etc. Consequently,
it is frequently the case that two or more blocks of data stored
at different block addresses in a storage server are actually
identical. Data duplication generally is not desirable, since
storage of the same data in multiple places consumes extra
storage space, which is a limited resource. Consequently, in
many large-scale storage systems, storage servers have the
ability to “deduplicate” data.
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Deduplication is a well-known method for increasing the
capacity of a storage device or system by replacing multiple
copies of identical sequences of data with a single copy,
together with a much smaller amount of metadata that allows
the reconstruction on demand of the original duplicate data.
Techniques for deduplicating within a single storage server
(or a single node in a storage cluster) are in wide-spread
commercial use.

A related use of deduplication is to reduce the amount of
data sent over a network, such as in a data mirroring system.
If the recipient of transmitted data stored a set of data seg-
ments, and another node of the network wants to send it
another data segment, deduplication techniques can be used
to avoid sending the data segment if the recipient already has
an exact copy of it. This is called network deduplication, or
network acceleration, because it increases the effective band-
width of the network.

The conventional method for identifying duplicate data
segments involves using a hash function, such as SHA-1, to
compute an integer, called a “fingerprint”, from each data
segment, where different data is extremely unlikely to pro-
duce the same fingerprint. When one node of a network
wishes to send a data segment to another node, but only if the
data segment is not already present on the other node, the
sending node can first send the fingerprint, and the receiving
node can inform the sending node whether or not it already
has a data segment with that fingerprint. Only if the finger-
print is not found on the receiving node is the data segment
sent.

There are two problems with the use of a hash value as a
data fingerprint. Firstly, while it is very unlikely, it is possible
that two different data segments can produce the same hash
value. If that occurs, data corruption can result. Further, the
larger the amount of data managed by a given system in a
given period of time, the greater is the likelihood that two
different data segments actually will produce the same hash
value. In a very large-scale storage system, therefore, this
very small likelihood can increase to an unacceptably high
value.

Additionally, hash values generated by conventional hash
algorithms can be quite lengthy, e.g., at least 160 bits (as with
SHA-1). Consequently, computing and comparing hash val-
ues can be computationally intensive, consuming a signifi-
cant amount of processor resources. Likewise, a significant
amount of storage space can be required to store the hash
values in a given storage server or node.

SUMMARY

The technique introduced here involves using a block
address and a corresponding generation number to uniquely
identify a sequence of data (i.e., as a data “fingerprint”) within
a given storage domain, for example, in a given storage sys-
tem. Each block address has an associated generation number
which indicates the number of times that data at that block
address has been modified.

The technique introduced here can be employed, for
example, to improve network deduplication, such as to deter-
mine whether a given storage server already has the data, and
to avoid sending the data to that storage server over a network
if it already has the data, such as for deduplication purposes.

This technique can also be employed, for example, to
maintain cache coherency in a variety of different applica-
tions. For example, it can be used where each of multiple
network storage nodes caches portions of a shared, distrib-
uted set of data and has write privileges for the set of data. It
can also be used to maintain cache coherency where read-
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modify-write operations are used by caching clients to per-
form partial-block writes. Further, the technique can be used
to distinguish valid and invalid data when multiple versions of
a given data block are stored in the same cache and/or when a
caching device boots up after being offline.

Other aspects of the technique will be apparent from the
accompanying figures and from the detailed description
which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present invention are
illustrated by way of example and not limitation in the figures
of'the accompanying drawings, in which like references indi-
cate similar elements and in which:

FIGS. 1A and 1B show examples of network storage envi-
ronments in which the technique introduced here can be
applied.

FIG. 2 illustrates an example of the architecture of the
storage operating system of a storage server;

FIG. 3 shows an example of a buffer tree of a data set,
including physical and logical block pointers;

FIG. 4 shows the relationship between inodes, an inode file
and a buffer tree;

FIG. 5 is a flow diagram of a process for using a logical
block address and generation number to maintain cache
coherency, according to a first embodiment;

FIG. 6 is a flow diagram of a process for using a logical
block address and generation number to maintain cache
coherency, according to a second embodiment;

FIG. 7 is a flow diagram of a process for using a logical
block address and generation number to maintain cache
coherency, according to a fourth embodiment;

FIG. 8 is a flow diagram of a process for using a logical
block address and generation number to maintain cache
coherency, according to a third embodiment;

FIG. 9 is a flow diagram of a process for using a logical
block address and generation number in network deduplica-
tion; and

FIG. 10 is a high-level block diagram of the architecture of
a storage server.

DETAILED DESCRIPTION
References in this specification to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature,
structure or characteristic being described is included in at
least one embodiment of the present invention. Occurrences
of such phrases in this specification do not necessarily all
refer to the same embodiment.

The technique introduced here involves using a logical
block address and a corresponding generation number
together as a “fingerprint” for a sequence of data, to uniquely
identify the sequence of data within a given storage domain
(e.g., in a given storage system). Each logical block address
has an associated generation number which indicates the
number of times that data at that block address has been
modified. The generation number of a block address is incre-
mented each time the data at that block address is modified.
This technique can be employed, for example, to maintain
cache coherency in various different contexts (e.g., among
multiple storage nodes on a network, where each of the nodes
caches portions of a shared, distributed set of data and has
write privileges for the set of data). It can also be employed in
the context of deduplication over a network, e.g., to determine
whether a given storage server already has the data, and to
avoid sending the data to that storage server over a network if
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it already has the data, thereby reducing consumption of
bandwidth between a source and destination and destination.
In an extent based file system, a generation number can be
assigned on a per-extent basis and used in a manner similar to
that described here.

Identifying data by its location (e.g., block address) is more
computationally efficient than computing a high-quality hash
function on the data. It also has the advantage that different
data never yields the same fingerprint: two different data
segments always have different locations, so there is no
chance of an error in data identification. However, using
location as the identifier of the data is problematic if the data
at that location changes at one device in a storage system but
not in another device in that system. In that case, the location
will identify different content on the two devices. Therefore,
use of a location-based fingerprint requires solving the prob-
lem of how to determine whether both sides of the network
have the same value stored at the specified location. This can
be done by using a generation number, which is essentially a
version identifier for an associated block address. The com-
bination of a logical block address and its associated genera-
tion number uniquely identifies a sequence of data within a
given storage domain. In one embodiment, the generation
number is a binary integer of sufficient length to prevent the
possibility of overflow in the lifetime of a given data volume
(consider, for example, that a 48-bit number incremented
50,000 times per second will not overflow for 178 years).
Note, however, that the term “number” in generation number
is not meant to exclude the possibility of using non-numeric
characters as generation numbers or as parts thereof.

The technique introduced here therefore includes creating
a reference for each data block at the source storage system,
where the reference is unique within the context of a given
storage domain, such as a given storage system. The reference
can be, for example, the combination of a logical block
address and a generation number. In certain embodiments, the
logical block address is a virtual volume block number
(VVBN) of the data block, which is described further below.
In another embodiment, the logical block address can be a
data segment number, a file pathname or file handle combined
with an offset, or other type of identifier.

Cache Coherency

Referring now to FIG. 1A, the technique introduced here
can be used, for example, to maintain cache coherency among
various caching nodes in a distributed system, relative to a
distributed set of data for which each node has write privi-
leges. Cache coherency refers to the consistency of data
stored in one or more caches of multiple caches that share a
data resource. In FIG. 1A, an origin server 10 on a network
contains the master version of content that is accessible, at
least indirectly, to various clients 11 on a network 14. Portions
of'that content are cached on each of multiple caching servers
13 (which can be part of or separate from the physical
machines that implement the clients 11). Assume further that
each client 11 has write privileges to all portions of the data
cached on any of the caching servers 13, and each caching
server 13 has write privileges to any of the data stored on the
origin server. In one embodiment each caching server 13 is a
conventional server computer configured to perform caching
of network based content.

Each client 11 has write privileges to all portions ofthe data
cached on any of the caching servers 13, and each caching
server 13 has write privileges to any of the data stored on the
origin server 10. Note that in another embodiment, the cach-
ing servers 13 are implemented in the same physical
machines as the clients 11. This would be the case with, for
example, Network File System (NFS), where client machines
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commonly cache the contents of NFS files. In yet another
embodiment, one or more of the caching servers 13 are imple-
mented in the same physical machine as the origin server 10;
for example, a caching server 13 could be implemented as
part of the N-module in a distributed server (described
below), although this may not be as efficient as an embodi-
ment in which they are implemented in client machines.

In accordance with the techniques introduced here, genera-
tion numbers can be associated with logical block addresses
to ensure cache coherency when any of multiple caching
clients (buffer caches) can modify partial blocks of storage. In
particular, this approach can be applied to implement an
optimistic concurrency technique when using a read-modify-
write process to safely modify part of a data block. As noted
above, to support modification of just part of a block that is
not currently in the cache, a caching client device can use the
read-modify-write technique. However, if two caching clients
attempt to do this with the same block at the same time, a
cache coherency error can result. The association of genera-
tion numbers with logical block addresses as described here
can be used to solve this problem. The following is an
example of how this can be done.

Suppose one of the caching servers 13 in FIG. 1A, “Cache
A”, is asked by a user process to write some data to the first
three bytes of a given data block, block-10. Cache A does not
currently have block-10 cached, so it fetches a copy of block-
10 from the origin server. The origin server 10 sends a copy of
block-10 to Cache A and informs Cache A that the transmitted
copy is version 17 of the block. Cache A then modifies the first
three bytes of the cached block, as specified by the user.

Suppose further that another one of the caching servers 13,
“Cache B”, does the same thing for the last five bytes of
block-10. At this point block-10 has not yet been modified on
the origin server. Cache A then sends back its modified copy
of'version 17 of block-10, and tells the origin server 10 that it
is sending version 18 of the block. The origin server 10
verifies that it currently has version 17, so 18 is a valid version
number for the next version. The origin server 10 stores the
data and updates the version number for this block to 18.

Cache B then sends back its modified copy of version 17 of
block-10, and tells the origin server 10 that it is sending
version 18 of the block. The origin server 10 determines that
it already has version 18, so it replies back to Cache B,
informing it that its attempted write is invalid. As a result,
Cache B has to perform another read-modify-write sequence.
That is, it has to fetch version 18 of block-10 from the origin
server 10, then modify its last five bytes of version 18 of
block-10, and then send it as version 19 back to the origin
server 10, which will accept it this time. Thus, in this example
scenario, a valid write request for a given data block is one in
which the generation number in the write request corresponds
to a later generation than the latest generation number of that
data block stored on the origin server.

This technique is illustrated in FIG. 5. Note that in FIG. 5§
and in other drawings in this document, certain operations
which are not germane to the technique being introduced may
be omitted, in order to simplify description. At 501 a caching
device (e.g., acaching server 13 in FIG. 1A) receives a request
to modify a portion of a data block (the “target data block™).
Next, at 502 the caching device determines whether it has the
target data block cached. If it does not have the target data
block cached, then at 503 the caching device requests and
receives the target data block in its latest generation number
from the origin server (e.g., origin server 10 in FIG. 1A), and
then at 504 modifies the target data block according to the
client request and increments the generation number of the
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6

corresponding block address. If the caching device does have
the data block cached (502), then it proceeds directly from
502 to 504.

After modifying the target data block locally, the caching
device sends a write message to the origin server at 505,
including the modified data block and indicating the block
address and the incremented generation number of the target
data block. The origin server receives that write message at
506 and responds by determining at 507 whether the genera-
tion number specified in the message is higher than the latest
generation number the origin server has stored for the speci-
fied block address. If so, the process proceeds to 510, where
the origin server sends confirmation of the write to the cach-
ing device and locally updates the content and generation
number of the block address of the target data block. If the
specified generation number is not higher than the latest gen-
eration number the server has for that block address, then the
process instead proceeds to 508, where the server sends an
“invalid write” message to the caching device. In response to
receiving the “invalid write” message at the caching device at
509, the process loops back to 503, as described above.

Another useful application of the techniques introduced
here is to determine which cached blocks are still valid (i.e., in
agreement with a master copy at the server) after rebooting a
persistent cache. Where multiple different caching devices
can modify the same primary storage, a cache invalidation
technique is employed when a caching device modifies a
block of storage, to let other caching devices know that their
copies of that cached block are no longer the latest version.
This is usually done as follows:

First, the caching device that is modifying a given block
writes a new version of'the data for that block to its cache, and
also notifies the storage server that it has modified that block
(the caching device may or may not send the new data imme-
diately to the server, depending on whether it is a write-
through cache or a write-back cache). In response, the storage
server will then immediately notify all caching devices that
have a copy of that block that their copy is now invalid. This
method works correctly while all the caching devices are up
and running. However, if the caching devices are implement-
ing persistent caches, and any caching device that has that
block cached is offline when the modification takes place (i.e.,
powered down, inactive, off the network, or otherwise out of
communication with the server), then some other method is
needed to ensure that when that caching device is rebooted, it
will not treat its out-of-date copy of the block as valid data.

Association of generation numbers with logical block
address is can be used to solve this problem as follows. Each
caching device persistently stores metadata including a block
address and generation number, for each cached data block.
Upon reboot, each caching device reloads all of that metadata.
However, each caching device will also mark all of its cached
blocks as suspect, because any or all of them may be invalid,
i.e., not the latest version, due to writes that happened when
the client was down. Any known or convenient technique can
be used to mark a block as suspect (e.g., a bit flag). Whenever
auser tries to read one of the cached blocks marked as suspect
from a caching device, that caching device sends the block
address and generation number to the storage server and asks
the storage server whether it is still the latest version of the
cached data block. If the server replies that it is the latest
version (based on the generation number being up to date),
then the caching device marks the cached block as valid (no
longer suspect), and the block will henceforth be treated as
valid, until and unless the server invalidates it. Otherwise, the
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cached block is treated as invalid, and the client fetches a new
copy of the data from the server in order to satisfy the read
request.

This technique is illustrated in FIG. 6. Initially, in response
to a reboot command, a caching device (e.g., a caching server
13 or client 11) performs typical boot-up operations at 601.
(Here the terms “boot”, “boot-up”, “reboot”, etc. all are
intended to mean any type of initialization or reinitialization
process.) The specifics of these operations are not germane to
the technique being introduced d here. Then at 602, the cach-
ing device marks all blocks in the cache as “suspect” in their
block metadata; this can be considered part of the boot-up
process. As noted above, this block metadata can be, but does
not have to be, stored in the caching device itself.

During normal operation, when a request is received (603)
by the caching device to read a target data block which is
cached, the caching device sends a message to the server at
604, including the logical block address and generation num-
ber of a location in the cache representing the target data
block, to inquire whether it is the latest version of the data
block. At 604, the caching device receives a reply to the
message from the server. If the reply indicates that it is the
latest version (according to the server’s records) (606), then at
607 the caching device changes the status of the location in
the cache from “suspect”to “valid” in its cache metadata. The
caching device than satisfies the read request using the valid
cached data block at that location at 608. If, on the other hand,
the reply from the server indicates the data block is not the
latest version (606), then the process instead branches from
606 to 609, where the caching device requests and receives
the latest version of the cached data block from the server,
caches it, and marks it as “valid” in its block metadata. The
caching device then marks the old cached copy of the block as
“invalid” at 610, and then proceeds to 608 as described above.

Yet another useful application of generation numbers,
relating to cache coherency, is to determine which copy of a
cached data block is the most recent copy when rebooting a
persistent cache, when multiple copies of the block have been
stored at different locations in the same cache. For example,
when using flash memory as a caching device, it improves
performance significantly to do mostly sequential writes to
the cache, because random writes to flash memory are much
slower than sequential writes. The advantage of sequential
writes is so large for some types of flash memory that it is
sometimes preferable to write new data for a cached block to
the next sequentially chosen position in the cache, rather than
overwriting the older copy of the block (which would entail a
non-sequential write). A disadvantage of doing that, however,
is that the cache then contains two or more different versions
of'the data for that block. This situation reduces the amount of
useful data the cache can hold.

It also introduces another problem if the cache is a persis-
tent cache (i.e., if the data in the cache is to be preserved
across reboots of the cache). While the cache is in operation,
it can use metadata to keep track of which cache location has
the latest version of each cached block of storage, ignoring the
older versions. But when the persistent cache is rebooted, it
needs some way to determine which of the multiple versions
of a cached data block is the latest one.

By storing in the flash memory metadata including a gen-
eration number together with a block address for each cached
block of data, the latest version of a block can be identified
when the reboot process takes place. In one embodiment,
therefore, upon reboot of the cache, all of that metadata is
scanned, and only the latest version of each cached block, as
determined by the highest generation number for that block,
is treated as valid when the cache resumes operation. Note
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that in other embodiments, the metadata including generation
numbers may be stored in a location other than in the caching
device itself, assuming that the cache upon reboot “knows”
where to look for the metadata.

This technique is illustrated in FIG. 7. At 701 the caching
device performs typical boot up operations such as are well
known in the art, the details of which are not germane to the
technique being introduced here. At 702 the caching device
scans the metadata of the cached blocks and performs the
following operations (703-706) for each cached data block.

At 703, for a given data block address, the process looks at
the generation number and determines whether any earlier
version (lower generation number) for this block address was
seen previously during this scan. If so, the process at 704
marks the copy of the earlier version of the data block as
“invalid” and marks the current version as “suspect” at 705. It
may then later change the state of the block from “suspect” to
“valid” according to the method described above in relation to
FIG. 6. If no earlier version was seen for this block address
during the scan, then the process proceeds from 703 directly
to 705, where the current version is marked as “valid”. The
process ends after the block metadata for all cached data
block has been scanned in this way (706, 707).

Now consider another scenario, in which an NFS caching
device (“Cache A”) receives a write request for the block
address, block-4, and at about the same time another NFS
caching device (“Cache B”) of the same file system receives
a write request for block address, block-10, indicating that
block-10 should be updated to have the same contents as
block-4. Suppose further that Cache B also happens to have
data for block-4 cached locally. The data that Cache B has for
block-4 is the old data, however, not the data as just modified
on Cache A.

Cache A and Cache B now both need to send their changes
over to the NFS server. Assume that the NFS server first
receives the changes from Cache A, relating to block 4. The
server updates the master copy of block 4, which is now
different from the copy of block 4 on Cache B. Meanwhile,
Cache B has already sent a message to the server indicating
that block 10 was just changed and now has the same contents
as block 4. But that is now incorrect, because block 4 has
changed on the server and block 10 is no longer the same. This
situation will produce a data error, i.e., a cache coherency
error.

Such errors can be avoided by associating generation num-
bers with logical block addresses. Modifying the above sce-
nario to do so, Cache B could send a message to the server that
essentially says that block-10 was just changed and now has
the same contents as version 17 (for example) of block-4. The
NFS server would look at the generation number it has
recorded for block-4 and see that its copy of block-4 is version
18, not version 17. The NFS server would therefore know that
a recent change to block-4 has made the incoming message
from Cache B obsolete. Assuming the server has not saved
version 17 of block-4, therefore, the NFS server would reply
back to Cache B with a message that requests the actual
contents of block-10 from Cache B. Cache B would then send
the actual data of'its block-10 to the NFS server. This process
is slower, of course, because an entire block of data is being
sent instead of just a short reference, however, data integrity
is preserved.

This technique is illustrated in FIG. 8 for the specific sce-
nario just described, i.e., where the caching device already
has a copy of the data as modified, but under a different block
address. In FIG. 8, the caching device (e.g., a caching server
13) initially receives a request to modify a data block, referred
to as the “target data block™, at 801. At 802 the caching device
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sends a write message to the origin server (e.g., origin server
10) indicating: 1) the block address of the target data block
(e.g., block-10 in the example described above), and 2) the
block address and generation number of the data as modified
(block-4, version 17 in the example above). In response to
receiving the write message at 803, the origin server deter-
mines at 804 whether it has data stored at the block address
specified by the write message with the generation number
specified by the write message. This determination can be
made by performing a lookup in a metadata index of data
stored by the origin server. If the server has data stored at the
specified block address with the specified generation number,
then the process proceeds to 809, where the server sends
confirmation of the write to the caching device and locally
updates the content at the target block address of the target
data block in accordance with the write message. Hence, this
technique can be viewed as a method of performing network
deduplication (discussed further below) to the extent it avoids
sending data blocks to the server unnecessarily.

If, on the other hand, the server determines at 804 that the
specified generation number is not the latest generation num-
ber for its block address, then at 805 it sends a message to the
caching device requesting the caching device to send the
actual data block corresponding to that block address and
generation number (e.g., block-4, version 17 in the example
above). The caching device receives this request at 806 and
responds at 807 by sending the data block to the origin server
at 807. After receiving the data block at 808, the server pro-
ceeds to 809, where it sends confirmation of the right to the
caching device and locally updates the content at the target
block address of the target data block as specified by the write
message.

Network Deduplication

Association of generation numbers with logical block
addresses can also be used advantageously for purposes of
deduplication in network data transfers, such as in a data
mirroring system. Mirroring is a technique for backing up
data, where a given data set at a source is replicated exactly at
a destination, which is often geographically remote from the
source. The replica data set created at the destination is called
a “mirror” of the original data set. Typically mirroring
involves the use of at least two storage servers, e.g., one at the
source and another at the destination, which communicate
with each other through a computer network or other type of
data interconnect to create the mirror.

In a large-scale storage system, such as an enterprise stor-
age network, it is common for some data to be duplicated and
stored in multiple places in the storage system. Sometimes
data duplication is intentional and desired, as in mirroring, but
often it is an incidental byproduct of normal operation of a
storage system. For example, a given sequence of data may be
part of two or more different files, LUNS, etc. Consequently,
it is frequently the case that two or more blocks of data stored
at different block addresses in a storage server are actually
identical. Data duplication generally is not desirable, since
storage of the same data in multiple places consumes extra
storage space, which is a limited resource. Consequently, in
many large-scale storage systems, storage servers have the
ability to “deduplicate” data.

Deduplication is a well-known method for increasing the
capacity of a storage device or system by replacing multiple
copies of identical sequences of data with a single copy,
together with a much smaller amount of metadata that allows
the reconstruction on demand of the original duplicate data.
Techniques for deduplicating within a single storage server
(or a single node in a storage cluster) are in wide-spread
commercial use.
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One use of deduplication is to reduce the amount of data
sent over a network, such as in a mirroring system. If the
recipient of transmitted data stored a set of data segments, and
another node of the network wants to send it another data
segment, deduplication techniques can be used to avoid send-
ing the data segment if the recipient already has an exact copy
of'it. This is called network deduplication, or network accel-
eration, because it increases the effective bandwidth of the
network.

The conventional method for identifying duplicate data
segments involves using a hash function, such as SHA-1, to
compute an integer, called a “fingerprint”, from each data
segment, where different data is extremely unlikely to pro-
duce the same fingerprint. When one node of a network
wishes to send a data segment to another node, but only if the
data segment is not already present on the other node, the
sending node can first send the fingerprint, and the receiving
node can inform the sending node whether or not it already
has a data segment with that fingerprint. Only if the finger-
print is not found on the receiving node is the data segment
sent.

There are two problems with the use of a hash value as a
data fingerprint. Firstly, while it is very unlikely, it is possible
that two different data segments can produce the same hash
value. If that occurs, data corruption can result. Further, the
larger the amount of data managed by a given system in a
given period of time, the greater is the likelihood that two
different data segments actually will produce the same hash
value. In a very large-scale storage system, therefore, this
very small likelihood can increase to an unacceptably high
value.

Additionally, hash values generated by conventional hash
algorithms can be quite lengthy, e.g., at least 160 bits (as with
SHA-1). Consequently, computing and comparing hash val-
ues can be computationally intensive, consuming a signifi-
cant amount of processor resources. Likewise, a significant
amount of storage space can be required to store the hash
values in a given storage server or node.

FIG. 1B shows one example of a data mirroring system in
which the technique introduced here can be applied. FIG. 1B
shows a source storage server 2A and a mirroring (destina-
tion) storage server 2B; these are each referred to generically
as a storage server 2 whenever the distinction between them is
not germane. In FIG. 1B, source storage server 2A is coupled
to a source storage subsystem 4A, and is coupled to a set of
storage clients 1 through an interconnect 3. The interconnect
3 may be, for example, a local area network (LAN), wide area
network (WAN), metropolitan area network (MAN), global
area network such as the Internet, a Fibre Channel fabric, or
any combination of such interconnects. Each of the clients 1
may be, for example, a conventional personal computer (PC),
server-class computer, workstation, handheld computing/
communication device, or the like.

Storage of data in the source storage subsystem 4A is
managed by storage server 2A. Source storage server 2A and
source storage subsystem 4A are collectively referred to as
the source storage system. The storage server 2 receives and
responds to various read and write requests from the clients 1,
directed to data stored in or to be stored in storage subsystem
4A. Storage subsystem 4A includes a number of nonvolatile
mass storage devices 5, which can be, for example, conven-
tional magnetic or optical disks or tape drives; alternatively,
they can be non-volatile solid-state memory, such as flash
memory, or any combination of such devices. The mass stor-
age devices 5 in storage subsystem 4A can be organized as a
Redundant Array of Inexpensive Disks (RAID), in which case
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the storage server 2 accesses the storage subsystem 4 using a
conventional RAID algorithm for redundancy.

The source storage server 2A is connected to a destination
storage server 2B through an interconnect 6, for purposes of
mirroring data. Although illustrated as a direct connection,
the interconnect 6 may include one or more intervening
devices and/or one or more networks. The source storage
server 2A includes a storage operating system (not shown),
discussed below, which is responsible for managing storage
of'data in the source storage subsystem 4A, servicing requests
from clients 1, and performing various other types of storage
related operations. The source storage server 2A also includes
a source mirroring application (SMA) (not shown) and, in
certain embodiments, a deduplication application (not
shown), either of which may be implemented as part of the
storage operating system. The SMA operates in cooperation
with a remote destination mirroring application (DMA) (not
shown) in the mirroring storage server 2B, to perform logical
mirroring of data stored in the source storage subsystem 4A.

Similarly, the destination storage server 2B includes a stor-
age operating system (not shown) to control storage related
operations on the destination storage server 2B. The destina-
tion storage server 2B and the destination storage subsystem
4B are collectively referred to as the destination storage sys-
tem. The destination storage server 2B works in cooperation
with the source storage server 2A to mirror data from the
source storage system to the destination storage system.

In at least one conventional asynchronous data mirroring
technique, the SMA first generates a persistent point-in-time
image (“snapshot”) of a data set to be replicated at the source
(e.g., a volume), and then sends that snapshot to the DMA;
this data is referred to as the baseline, or baseline snapshot.
Subsequently, from time to time, the SMA executes a mirror
update process (which may be at the request of the DMA). To
do so, the SMA takes an update snapshot of the data set,
identifies any data blocks that have been modified since the
last snapshot, whichever is later, and sends those changed
blocks to the destination.

Storage servers 2A and 2B each may be, for example, a
storage server which provides file-level data access services
to hosts, such as commonly done in a network attached stor-
age (NAS) environment, or block-level data access services
such as commonly done in a storage area network (SAN)
environment, or it may be capable of providing both file-level
and block-level data access services to hosts. Further,
although each storage server 2A or 2B is illustrated as a single
unit in FIG. 1B, either or both can have a distributed archi-
tecture. For example, a storage server 2 can be designed as a
physically separate network module (e.g., “N-module”) and
data module (e.g., “D-module”) (not shown), which commu-
nicate with each other over a physical interconnect. The
N-module accepts incoming requests from clients of the stor-
age system and then routes each of these requests to the
appropriate D-module, each of which is responsible for stor-
ing some portion of the data in the distributed system. Such an
architecture allows convenient scaling, such as by deploying
two or more N-modules and D-modules, all capable of com-
municating with each other through the interconnect.

The technique of associating generation addresses with
block numbers can be used to avoid unnecessarily sending
duplicate data over the communication link between storage
server 2A and storage server 2B during a mirror update or
other similar replication operation, i.e., to perform network
deduplication. For example, during a mirror update, the
source storage server 2A initially sends only the logical block
addresses and corresponding generation numbers of the
modified data blocks to the destination storage server 2B. The
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destination storage server 2B compares those references
against its local metadata structure to determine whether it
already has any of those data blocks stored (i.e., matching
block addresses and generation numbers). If the destination
storage server 2B determines that it already has a data block
stored, it does not request or receive that data block again
from the source storage server 2A. Hence, no data block is
sent more than once from the source storage server 2A to the
destination storage server 2B for purposes of data replication
(e.g., for purposes of creating or updating a mirror).

FIG. 9 illustrates an example of a process of using logical
block addresses and generation numbers to perform network
deduplication. This process can apply to, for example, a mir-
roring system such as shown in FIG. 1B or a distributed
content caching system such as shown in FIG. 1A. Note also
that the network deduplication and cache coherency tech-
niques described here can overlap. For example, note that the
network deduplication process of FIG. 9 is similar to the
process of FIG. 8 discussed above in relation to cache coher-
ency.

Initially, at 901 a source device (e.g., source storage server
2A in FIG. 1B or a client 1 in FIG. 1A) determines that a
destination device (e.g., destination storage server 2B in FIG.
1B or the server in FIG. 1A) should have a data block which
is currently stored at the source device. For example, this
determination may be done as part of a mirroring update
operation in a mirroring system. As another example, it may
be done as part of a write-through operation from the caching
device to the origin server when the caching device updates
the data block in response to a write request. Next, at 902 the
source device sends to the destination device an appropriate
type of write command (depending on the purpose), with a
logical block address (e.g., VVBN) of the data block and the
latest generation number of that logical block address.
Depending on the purpose of the operation (e.g., mirroring
update, cache write-through), the write command may also
include or be accompanied by other information or param-
eters. For example, in the case of a cache write-through, the
logical block address and generation number might identify a
segment of source data, and the write command might include
another logical block address as the target address to be
updated with that source data.

The destination device receives the write command, logi-
cal block address and generation number at 903. In response,
the destination device determines at 904 whether it has data
stored at that block address with that generation number. This
determination can be made by performing a lookup in a
metadata index of data stored by the destination device. The
location and format of this metadata index is not germane to
the technique introduced here. If the destination device deter-
mines that it has that data stored, then the process branches to
909, where the destination device executes the appropriate
action(s), according to the write command, in relation to the
indicated logical block address and generation number. The
appropriate action might be, for example, modifying or cre-
ating data at a target block address in the destination device
with the data associated with the specified logical block
address and generation number in the destination device. The
process then ends.

On the other hand, if the destination device determines at
904 that it does not have data corresponding to the specified
logical block address and generation number, then the pro-
cess instead proceeds from 904 to 905. At 905 the destination
device sends a request to the source device to send the actual
data block corresponding to the specified logical block
address and generation number. The source device receives
that request at 906 and responds by sending the actual data
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block to the destination device at 907. The destination device
receives the data block at 908. The process then continues to
909, as described above.

Implementation

A caching server 13 such as shown in FIG. 1A or a storage
server 2 such as shown in FIG. 1B, can include a storage
operating system for use in controlling its basic operations
(organizing data, reading and writing data in response to
client requests, etc.). FIG. 2 schematically illustrates an
example of the architecture of such a storage operating sys-
tem. The storage operating system 20 can be implemented in
programmable circuitry programmed with software and/or
firmware, or in specially designed non-programmable cir-
cuitry, or in a combination thereof. In the illustrated embodi-
ment, the storage operating system 20 includes several mod-
ules, or “layers”. These layers include a storage manager 21,
which is the core functional element of the storage operating
system 20. The storage manager 21 imposes a structure (e.g.,
one or more file systems) on the data managed by the storage
server 2 and services read and write requests from clients 1.

To allow the device to communicate over the network 3
(e.g., with clients 1 or 11), the storage operating system 20
also includes a protocol layer 22 and a network access layer
23, logically “under” the storage manager 21. The protocol 22
layer implements various higher-level network protocols,
such as Network File System (NFS), Common Internet File
System (CIFS), Hypertext Transfer Protocol (HTTP), Inter-
net small computer system interface (ISCSI), and/or backup/
mirroring protocols. The network access layer 23 includes
one or more network drivers that implement one or more
lower-level protocols to communicate over the network, such
as Ethernet, Internet Protocol (IP), Transport Control Proto-
col/Internet Protocol (TCP/IP), Fibre Channel Protocol
(FCP) and/or User Datagram Protocol/Internet Protocol
(UDP/TP).

Also, to allow the device to communicate with a storage
subsystem (e.g., storage subsystem 4), the storage operating
system 20 includes a storage access layer 24 and an associated
storage driver layer 25 logically under the storage manager
21. The storage access layer 24 implements a higher-level
disk storage redundancy algorithm, such as RAID-4, RAID-5
or RAID-DP and, therefore, is henceforth referred to as
“RAID layer 24” to facilitate description. The storage driver
layer 25 implements a lower-level storage device access pro-
tocol, such as Fibre Channel Protocol (FCP) or small com-
puter system interface (SCSI).

Also shown in FIG. 2 is the path 27 of data flow through the
storage operating system 20, associated with a read or write
operation, from the client interface to the storage interface.
Thus, the storage manager 21 accesses the storage subsystem
4 through the storage access layer 24 and the storage driver
layer 25.

The storage operating system 20 can have a distributed
architecture. For example, the protocol layer 22 and network
access layer 23 can be contained in an N-module (e.g.,
N-blade) while the storage manager 21, storage access layer
24 and storage driver layer 25 are contained in a separate
D-module (e.g., D-blade). In such cases, the N-module and
D-module communicate with each other (and, possibly, with
other N- and D-modules) through some form of physical
interconnect and collectively form a storage server node.
Such a storage server node may be connected with one or
more other storage server nodes to form a highly scalable
storage server cluster.
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It is useful now to consider how data can be structured and
organized by operating system 20 in certain embodiments of
the techniques introduced here. Reference is now made to
FIGS. 3 and 4 in this regard.

In at least one embodiment, data is stored in the form of
volumes, where each volume contains one or more directo-
ries, subdirectories, and/or files. A “volume” is a set of stored
data associated with a collection of mass storage devices,
such as disks, which obtains its storage from (i.e., is contained
within) an aggregate, and which is managed as an indepen-
dent administrative unit, such as a complete file system. An
“aggregate” is a pool of storage, which combines one or more
physical mass storage devices (e.g., disks) or parts thereof
into a single logical storage object. An aggregate contains or
provides storage for one or more other logical data sets at a
higher level of abstraction, such as volumes.

In certain embodiments, an aggregate uses a physical vol-
ume block number (PVBN) space that defines the storage
space of physical blocks provided by the storage devices of
the volume, and each volume uses a virtual volume block
number (VVBN) space to organize those blocks into one or
more higher level objects, such as directories, subdirectories,
qtrees and files. A PVBN, therefore, is a physical block
address, i.e., the address of a physical block in the aggregate.
AVVBN is alogical block address, i.e., the address of a block
in a volume (the same block as referenced by the correspond-
ing PVBN), i.e., the offset of the block within a file that
represents the volume. Knowledge of all of the VVBNs and
PVBNs is maintained by the storage operating system in each
storage server 2. Each VVBN space is an independent set of
values that corresponds to locations within a directory or file,
which are translated by the storage access layer 34 to device
block numbers (DBNs) on a physical storage device.

Each volume can be a separate file system thatis “mingled”
with other volumes onto a common set of storage in the
aggregate by the storage operating system. A RAID layer in
the storage operating system builds a RAID topology struc-
ture for the aggregate that guides each volume when perform-
ing write allocation. The RAID layer also presents a PVBN-
to-DBN mapping to the storage manager 21.

In addition, the storage operating system may also main-
tain another type of logical block number for each data block:
If'the storage server stores data in the form of'files, the storage
operating system may also use file block numbers (FBNs).
Each FBN indicates the logical position of the block within a
file, relative to other blocks in the file, i.e., the offset of the
block within the file. For example, FBN 0 represents the first
logical block in the file, FBN 1 represents the second logical
block in the file, and so forth. Note that the PVBN and VVBN
of'a data block are independent of the FBN(s) that refer to that
block.

In certain embodiments, each file is represented in a stor-
age server on the form of a hierarchical structure called a
“buffer tree”. A buffer tree is a hierarchical structure which
used to store file data as well as metadata about a file, includ-
ing pointers for use in locating the data blocks for the file. A
buffer tree includes one or more levels of indirect blocks
(called “L1 blocks™, “L2 blocks™, etc.), each of which con-
tains one or more pointers to lower-level indirect blocks and/
or to the direct blocks (called “L.0 blocks™) of the file. All of
the user data in a file is stored only in the lowest level (L0)
blocks.

The root of a buffer tree is the “inode” of the file. An inode
is a metadata container that is used to store metadata about the
file, such as ownership, access permissions, file size, filetype,
and pointers to the highest level of indirect blocks for the file.
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Each file has its own inode. The inode is stored in a separate
inode file, which may itself be structured as a buffer tree.

FIG. 3 shows an example of a buffer tree 35 of a file. The
file is assigned an inode 36, which references Level 1 (L1)
indirect blocks 37. Each indirect block 37 stores at least one
PVBN and a corresponding VVBN for each PVBN. There is
a one-to-one mapping between each VVBN and PVBN. Note
that a VVBN is a logical block number in a volume, which is
avirtual number for addressing; but there is only one copy of
the LO data block physically stored. Also, to simplify
description, only two PVBN-VVBN pairs are shown in each
indirect block 37 in FIG. 3; however, an actual implementa-
tion would likely include many PYBN-VVBN pairs in each
indirect block 37. Each PVBN references a physical block 38
in a storage device (i.e., in the aggregate 30) and the corre-
sponding VVBN represents the corresponding logical block
39 in a file that represents the volume (called the “container
file”) 31. Physical blocks 38 and logical blocks 39 are actually
the same LO data for any particular PVBN-VVBN pair, how-
ever, they are accessed in different ways: The PVBN is
accessed directly in the aggregate 30, while the VVBN is
accessed virtually via the volume container file 31.

Referring now to FIG. 4, for each volume managed by the
storage server 2, the inodes of the files and directories in that
volume are stored in a separate inode file 41. A separate inode
file 41 is maintained for each volume. Each inode 36 in an
inode file 41 is the root of the buffer tree 35 of a corresponding
file. The location of the inode file 41 for each volume is stored
in a Volume Information (“Volumelnfo™) block 42 associated
with that volume. The Volumelnfo block 42 is a metadata
container that contains metadata that applies to the volume as
awhole. Examples of such metadata include, for example, the
volume’s name, type, size, any space guarantees to apply to
the volume, and the VVBN of the inode file of the volume.

FIG. 10 is a high-level block diagram showing an example
of'the architecture of a storage server 2, such as storage server
2A or 2B. The storage server 2 includes one or more proces-
sors 61 and memory 62 coupled to an interconnect 63. The
interconnect 63 shown in FIG. 10 is an abstraction that rep-
resents any one or more separate physical buses, point-to-
point connections, or both connected by appropriate bridges,
adapters, or servers. The interconnect 63, therefore, may
include, for example, a system bus, a Peripheral Component
Interconnect (PCI) bus or PCI-Express bus, a HyperTransport
or industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), IIC
(I2C) bus, or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 1394 bus, also called “Firewire”.

The processor(s) 61 is/are the central processing unit
(CPU) of the storage server 2 and, thus, control the overall
operation of the storage server 2. In certain embodiments, the
processor(s) 61 accomplish this by executing software or
firmware stored in memory 62. The processor(s) 61 may be,
or may include, one or more programmable general-purpose
or special-purpose microprocessors, digital signal processors
(DSPs), programmable servers, application specific inte-
grated circuits (ASICs), programmable logic devices (PLDs),
trusted platform modules (TPMs), or the like, or a combina-
tion of such devices.

The memory 62 is or includes the main memory of the
storage server 2. The memory 62 represents any form of
random access memory (RAM), read-only memory (ROM),
flash memory, or the like, or a combination of such devices. In
use, the memory 62 may contain, among other things, code 67
embodying at least a portion of a storage operating system of
the storage server 2. Code 67 can also include a mirroring
application and/or deduplication application.
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Also connected to the processor(s) 61 through the inter-
connect 63 are a network adapter 64 and a storage adapter 65.
The network adapter 64 provides the storage server 2 with the
ability to communicate with remote devices, such as clients 1,
over the interconnect 3 and may be, for example, an Ethernet
adapter or Fibre Channel adapter. The storage adapter 65
allows the storage server 2 to access a storage subsystem,
such as storage subsystem 4A or 4B, and may be, for example,
a Fibre Channel adapter or SCSI adapter.

The techniques introduced above can be implemented in
software and/or firmware in conjunction with programmable
circuitry, or entirely in special-purpose hardwired circuitry,
or in a combination of such embodiments. Special-purpose
hardwired circuitry may be in the form of, for example, one or
more application-specific integrated circuits (ASICs), pro-
grammable logic devices (PLDs), field-programmable gate
arrays (FPGAs), etc.

Software or firmware to implement the techniques intro-
duced here may be stored on a machine-readable medium and
may be executed by one or more general-purpose or special-
purpose programmable microprocessors. A “machine-read-
able medium”, as the term is used herein, includes any mecha-
nism that can store information in a form accessible by a
machine (a machine may be, for example, a computer, net-
work device, cellular phone, personal digital assistant (PDA),
manufacturing tool, any device with one or more processors,
etc.). For example, a machine-accessible medium includes
recordable/non-recordable media (e.g., read-only memory
(ROM); random access memory (RAM); magnetic disk stor-
age media; optical storage media; flash memory devices;
etc.), etc.

The term “logic”, as used herein, can include, for example,
special-purpose hardwired circuitry, software and/or firm-
ware in conjunction with programmable circuitry, or a com-
bination thereof.

Although the present invention has been described with
reference to specific exemplary embodiments, it will be rec-
ognized that the invention is not limited to the embodiments
described, but can be practiced with modification and alter-
ation within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive sense.

What is claimed is:

1. A storage server, comprising:

a network interface through which to communicate over a
network;

a storage interface through which to communicate with a
storage device;

a processor;

a non-transitory computer readable medium that stores
instructions that when executed by the processor, cause
the storage to,

receive, via the network interface, a write request including
a source block address and a generation number,
wherein a source device stores data associated with the
write request at the source block address, and the gen-
eration number indicates a number of times that data at
the source block address has been modified;

determine whether storage server already has a data block
that matches the source block address and the generation
number; and

process the write request by copying the data block that
matches the source block address and the generation
number to a data block in the storage device via the
storage interface, without receiving the data associated
with the write request from the source device, if the
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storage server already has the data block that matches
the source block address and the generation number.

2. The storage server of claim 1, wherein the storage server
is configured to have permission to modify the data block.

3. The storage server of claim 1, wherein the source block
address and the generation number uniquely identify the data
at the source block address within the source device.

4. The storage server of claim 1, wherein the non-transitory
computer readable medium further stores instructions that
when executed by the processor, cause the storage server to:

increment a generation number of a block address each

time the data at the block address is modified.

5. The storage server of claim 1, wherein said determining
whether the storage server already has a data block that
matches the source block address and the generation number
comprises performing a lookup in a metadata index contain-
ing generations numbers associated with blocks addresses of
the storage device.

6. The storage server of claim 1, wherein said processing
the write request comprises requesting the data associated
with the write request from the source device if the storage
server does not have a data block that matches the source
block address and the generation number.

7. The storage server of claim 1, wherein the storage server
is a network caching device and the destination device is an
origin server for content cached by the storage server.

8. The storage server of claim 1, wherein the storage device
is a non-volatile mass storage device.

#* #* #* #* #*
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